Graphs of Acyclic Cubical Complexes
نویسندگان
چکیده
It is well known that chordal graphs are exactly the graphs of acyclic simplicial complexes . In this note we consider the analogous class of graphs associated with acyclic cubical complexes . These graphs can be characterized among median graphs by forbidden convex subgraphs . They possess a number of properties (in analogy to chordal graphs) not shared by all median graphs . In particular , we disprove a conjecture of Mulder on star contraction of median graphs . A restricted class of cubical complexes for which this conjecture would hold true is related to perfect graphs .
منابع مشابه
Recognizing Graphs of Acyclic Cubical Complexes
Acyclic cubical complexes have first been introduced by Bandelt and Chepoi in analogy to acyclic simplicial complexes. They characterized them by cube contraction and elimination schemes and showed that the graphs of acyclic cubical complexes are retracts of cubes characterized by certain forbidden convex subgraphs. In this paper we present an algorithm of time complexity O(m log n) which recog...
متن کاملEdge Expansion of Cubical Complexes
In this paper we show that graphs of “neighbourly” cubical complexes – cubical complexes in which every pair of vertices spans a (unique) cube – have good expansion properties, using a technique based on multicommodity flows. By showing that graphs of stable set polytopes are graphs of neighbourly cubical complexes we give a new proof that graphs of stable set polytopes have edge expansion 1.
متن کاملA Convexity Lemma and Expansion Procedures for Bipartite Graphs
A hierarchy of classes of graphs is proposed which includes hypercubes, acyclic cubical complexes, median graphs, almost-median graphs, semi-median graphs and partial cubes. Structural properties of these classes are derived and used for the characterization of these classes by expansion procedures, for a characterization of semi-median graphs by metrically defined relations on the edge set of ...
متن کاملCombinatorial Groupoids, Cubical Complexes, and the Lovász Conjecture
A foundation is laid for a theory of combinatorial groupoids, allowing us to use concepts like “holonomy”, “parallel transport”, “bundles”, “combinatorial curvature” etc. in the context of simplicial (polyhedral) complexes, posets, graphs, polytopes and other combinatorial objects. A new, holonomy-type invariant for cubical complexes is introduced, leading to a combinatorial “Theorema Egregium”...
متن کاملO ct 2 00 5 Combinatorial groupoids , cubical complexes , and the Lovász conjecture
A foundation is laid for a theory of combinatorial groupoids, allowing us to use concepts like “holonomy”, “parallel transport”, “bundles”, “combinatorial curvature” etc. in the context of simplicial (polyhedral) complexes, posets, graphs, polytopes and other combinatorial objects. A new, holonomy-type invariant for cubical complexes is introduced, leading to a combinatorial “Theorema Egregium”...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 1996